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Introduction

A census of the population of the India is taken every 10 years.
The following table lists the population, in thousands of people,
from 1951 to 2011.

Year ‘ 1951 ‘ 1961 ‘ 1971 ‘ 1981 ‘ 1991 ‘ 2001 ‘ 2011

Population 361,088 439,235 548,160 683,329 846,388 1,028,737 1,210,193

(in thousands)

In reviewing these data, we might ask whether they could be used

to provide a reasonable estimate of the population, say, in 1996, or
even in the year 2014. Predictions of this type can be obtained by

using a function that fits the given data.

This process is called interpolation.



Weierstrass Approximation Theorem

One of the most useful and well-known classes of functions,
mapping the set of real numbers into itself, is the class of
algebraic polynomials, the set of functions of the form

Pn(X) = apx" + 3n—1Xn_1 + -+ a1x + ao,

where n is a nonnegative integer, ap, a1, ..., a, are real constants,
and x is a variable.

Its OK for a polynomial to have more than one variable, but we
will only talk about polynomials with 1 variable.

The individual pieces of a polynomial are called terms. The
polynomial 5x* — 7x3 + 2x — 11 has 4 terms. They are 5x* 7x3,2x
and 11.

The term —11 doesnt contain a variable. For this reason, its called
the constant term. The degree of the polynomial is the largest
exponent. Here, the degree is 4.



Given any function, defined and continuous on a closed and
bounded interval, there exists a polynomial that is as “close” to
the given function as desired. This result is expressed precisely in
the following theorem.

Theorem (Weierstrass Approximation Theorem)

Suppose that f is defined and continuous on [a, b]. For each ¢ > 0,
there exists a polynomial P(x), with the property that

|f(x) — P(x)| < e, forall x € [a, b].



Why polynomials are important?

Weierstrass Approximation
Theorem is illustrated in ¥
the figure. -
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In science and engineer-
ing, polynomials arise ev- s
erywhere. ‘ ;

An important reason for considering the class of polynomials in the
approximation of functions is that the “derivative and indefinite
integral of a polynomial” are easy to determine and they are also
polynomials.

For these reasons, polynomials are often used for approximating
continuous functions.



Taylor polynomials are not useful for interpolation

The Taylor polynomials (discussed earlier) are one of the
fundamental building blocks of numerical analysis.

The Taylor polynomials agree as closely as possible with a given
function at a specific point, but they concentrate their accuracy
near that point.

A good interpolation needs to provid a relatively accurate
approximation over an entire interval, and Taylor polynomials do
not generally do this.



Example

Taylor polynomials of various degree for f(x) = 1/x about xp = 1

are
n

Po(x) =D (-1)K(x = 1)k,

k=0

When we approximate f(3) = 1/3 by Pn(3) for larger values of n,
the approximations become increasingly inaccurate, as shown in
the following table.




Taylor polynomials are not appropriate for interpolation

Since the Taylor polynomials have the property that all the
information used in the approximation is concentrated at the single
point xp, it is not uncommon for these polynomials to give
inaccurate approximations as we move away from xg. This limits
Taylor polynomial approximation to the situation in which
approximations are needed only at points close to xp.

For ordinary computational purposes it is more efficient to use
methods that include information at various points.

The primary use of Taylor polynomials in numerical analysis is not
for approximation purposes, but for the derivation of numerical
techniques and for error estimation.

Since the Taylor polynomials are not appropriate for interpolation,
alternative methods are needed.



The problem of determining a polynomial of degree one that
passes through the distinct points (xo, o) and (x1, y1) is the same
as approximating a function f for which f(xp) = yo and f(x1) = »1
by means of a first-degree polynomial interpolating, or agreeing
with, the values of f at the given points.

We first define the functions

o X —X1 . X — X0
Lo(x) = o— and L;(x) = o
and then define
X — X X — X
P(x) = Lo(x)f (x0) + Li(x)f (xa) = S — ~F(x0) + L — “f(x).

Since Lo(x0) = 1, Lo(x1) = 0, L1(x0) =0, and Li(x1) = 1, we have
P(x0) = yo and P(x1) = y1. So P is the unique linear function
passing (xo, y0) and (x1,y1).



Lagrange Interpolating Polynomial

To gneralize the concept of linear interpolation, consider the
construction of a polynomial of degree at most n that passes
through the n+ 1 points (xo, f(x0)), (x1, f(x1)), - - -, (Xn, F(xn))-

In this case we need to construct, for each k =0,1,2,...,n, a
function Li(x) (called Lagrange basis, also called the nth
Lagrange interpolating polynomial) with the property that
Lx(x;) = 0 when i # k and Lx(xx) =1, hence

n (x — xi)
L) =1l —35
g )



The interpolating polynomial is easily described once the form of
Ly is known, by the following theorem.

Theorem
If n+ 1 points (xo, f(x0)), (x1, f(x1)), - .., (xn, f(xn)) are given,

then a unique polynomial P(x) of degree at most n exists with
f(xk) = P(xx) for each k =0,1,...,n. This polynomial is given by

P(x) =Y (i) Li().
k=0



Graph of Lagrange Interpolating Polynomial

Given 5 points (xo, f(x0)), (x1,f(x1)), ..., (xa, f(xa)), a sketch of
the graph of a typical Ly is shown in Figure.

Note how each basis polynomial has a value of 1 for x = xx
(0 < k < 4), and a value of 0 at all other sample locations.



Example

Simply multiplying each basis with the corresponding sample value,
and adding them all up yields the interpolating polynomial

4
x) =Y Fx)Li(x)
k=0

The 5 weighted polynomials are Li(x)f(xx) (0 < k < 4) and their
sum (red line) is the interpolating polynomial P(x) (red line)
which is shown in the following figure.




How to calculate error bound?

The next step is to calculate a remainder term or bound for the
error involved in approximating a function by an interpolating
polynomial. This is done in the following theorem.

Theorem (An Important Result for Error Formula)

Suppose xo, X1, - . ., X are distinct numbers in the interval [a, b]
and f € C™1[a, b]. Then, for each x € [a, b], a number &(x)
(generally unknown) in (a, b) exists with

FtD(E(x))

) = PX)+ — .

(x —x0)(x — x1) -+ (x — Xn),

where P(x) is the interpolating polynomial given by

P(x) = 2k=o f(xk)Lk(x)-



Error Analysis

The error formula is an important theoretical result because
Lagrange polynomials are used extensively for deriving numerical
differentiation and integration methods.

Error bounds for these techniques are obtained from the “Lagrange
error formula”.

Note that the error for the Lagrange polynomial is quite similar to
that for the Taylor polynomial.



Bound for the Error Involved

The nth Taylor polynomial about xp concentrates all the known
information at xg and has an error term of the form

FP(E)
T T

The Lagrange polynomial of degree n uses information at the
distinct numbers xg, x1, ..., x, and, in place of (x — xp)"*?, its
error formula uses a product of the n+ 1 terms

(x = x0)(x — x1) -+ (x — xn):

FID(E(x))

(3 1) (x —x0)(x — x1) -+ (x — Xn).



» Richard L. Burden and J. Douglas Faires, “Numerical Analysis
— Theory ad Applications”, Cengage Learning, New Delhi,
2005.

» Kendall E. Atkinson, "“An Introduction to Numerical
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